本帖最後由 40033444 於 2018-5-3 01:01 編輯
f(n)=a(n-3)(n-4)(n-5)+b(n-3)(n-4)+c(n-3)+d →(1)
由f(3)=4得 4=a(3-3)(3-4)(3-5)+b(3-3)(3-4)+c(3-3)+d, 4=d
由f(4)=10得 10=a(4-3)(4-4)(4-5)+b(4-3)(4-4)+c(4-3)+4, 10=c+4, 6=c
由f(5)=20得 20=a(5-3)(5-4)(5-5)+b(5-3)(5-4)+6(5-3)+4, 20=2b+12+4, 4=2b, 2=b
由f(6)=35得 35=a(6-3)(6-4)(6-5)+2(6-3)(6-4)+6(6-3)+4, 35=6a+12+18+4, 1=6a, 1/6=a
代入(1)得f(n)=1/6(n-3)(n-4)(n-5)+2(n-3)(n-4)+6(n-3)+4 →(2)
再將(2)展開成題目給的an³+bn²+cn+d的形式
→ f(n)=1/6(n²-7n+12)(n-5)+2(n²-7n+12)+6n-18+4
f(n)=1/6(n³-12n²+47n-60)+2(n²-7n+12)+6n-14
f(n)=( (1/6)n³-2n²+(47/6)n-10 )+(2n²-14n+24)+6n-14
f(n)=(1/6)n³-(1/6)n
比較得a=1/6 , b=0 , c=-(1/6), d=0
再代一個好了
f(7)=(C2取2)(-1)²+(C3取2)(-1)²+...+(C7取2)(-1)²
=1+3+...+21=56
f(7)=(1/6)(343)-(1/6)(7)
=(1/6)(343-7)
=336/6=56 |